Useful Math Overview

Instructor: Krishna Venkatasubramanian

CSC 212

Based on slides from Prof. Ned Okie, Radford University https://www.radford.edu/~nokie/classes/360/math.html

Announcements

- Piazza and Gradescope accounts setup
- Class is full! No more new students can be admitted unless someone drops
- IoT Sunday Makerfest.
- Quiz0 on Thursday (Sept 12) --- will cover today's material --- NO CALCULATORS

Introduction

- We will frequently use basic math in this course
 - You need to be familiar with it
- Topics include
 - Exponentiation
 - Logarithms
 - Permutation and Combination
 - Summations
 - Floor and ceiling
 - Factorials

Exponentiation

- Addition, multiplication, exponentiation:
 - Multiplication is repeated addition
 - **Exponentiation** is repeated multiplication
- Example:
 - 2 * 3 = 2 + 2 + 2
 - $2^3 = 2 * 2 * 2$
- General idea
 - Addition: *a* + *n* = *a*+ (1+···+1) (*n* times)
 - **Multiplication:** $a \times n = a + a + \dots + a$ (*n* times)
 - **Exponentiation:** $a^n = a \times a \times \cdots \times a$ (*n* times)

Properties of Powers

- Properties follow from the definition:
 - b^a * b^c = ?
 - b⁰ = ?
 - $b^{a}/b^{c} = ?$
 - 1 / b^c = ?
 - (b^a)^c = ?

Examples:

- $2^2 * 2^{30} = ?$
- $2^{10} / 2^4 = ?$
- $2^{-3} = ?$
- (2³)⁴ =?

Important Approximations

- $2^{10} = 1024 \approx 1000 = 10^3$
- $2^{20} = (2^{10})^2 = 1024^2 \approx 1000^2 = (10^3)^2 = 10^6 = 1$ million
- 2³⁰ **≈** ??
- 2³² ≈ ??

• 2⁶⁴ ≈ ??

Logarithms

- Definition
 - *log_bx* is defined as the **power** to which the base, *b*, must be raised to produce *x*
- So, $b^{\log_b x} = ?$
 - (assuming *b* > 0 and *x* > 0)

Logarithm Intuition

- Another way to think about logarithms.
- Definition: log_bx is the power to which we raise b
 to get x
- Intuition: log_bx is the number of times x can be divided by b before reaching 1
- Logarithm can be calculated for any positive base

Examples

- $\log_8 64 = ?$
- log₅ 625 = ?
- log₇ 16807 = ?
- log_e 20 = ?

 $log_2 = lg$ (log to the base two)

 $log_{10} = log (log to the base 10)$

- log₁₅ 3375 = ?
- log₁₀ 1trillion = ?

 $log_e = ln (natural logarithm)$ $e \approx 2.71828$ [12 zeros]

Important Properties of Logarithms

- log_b -1 = ?, for any *b*
- log_b 1 = ?, for any *b*
- log_b b = ?, for any b
- log_b (b ^x) = ? for any b
- $b^{\log_b x} = ?$
- log_b *xy* = ?
- $\log_b x^y = ?$
- $\log_b x/y$?

More Examples

- 2 ^{lg 7} = ?
- lg (4 * 8) = ?
- $\lg(1/4) = ?$
- lg (16 / 2) = ?
- log_{3^2} 729 = ?
- lg (16⁵) = ?

Approximations

- What if the power is not an integer?
 - $\log_2 4 = 2.000$
 - log₂ 7 ≈ 2.807
 - $\log_2 8 = 3.000$

- Intuition:
 - If x is an integer power of b, it's exactly the number of times to divide, otherwise approximately

Changing Logarithm Base

Change-of-Base Formula:

$$\log_b(x) = rac{\log_d(x)}{\log_d(b)}$$

Courtesy: https://www.purplemath.com/modules/logrules5.htm

 $\log_4 35 = \log(35) / \log(4) = 1.544 / 0.6 = 2.57.$

$$\log_4 35 = \lg(35) / \lg(4) = 5.13/2 = 2.57...$$

Derivation can be found here: https://www.algebra.com/algebra/homework/logarithm/gonzo-lesson-1.lesson

Calculate using Change-of-Base Rule

- •log₉81 = ?
- •log_{7.38}e = ?
- $\log_{17} 1024 = ?$
- $\log_{103}4096 = ?$
- $\log_{1024}65536 = ?$
- •log₄₉343 = ?

Factorials

- Definition: For a positive integer n>= 0
 - n! = 1, if n = 0
 - n! = n * (n-1)! If n > 0
- Thus n! = 1*2*3*....*n
- 5! = 1*2*3*4*5 = 120
- 10! = 3628800
- 20! = 2.4 * 10¹⁸

Grows Exponentially

Permutation

- Definition: ordering of a set of objects
- In practice: how many ways can you order n objects?
- Example --- permutations of abc
 - abc, acb, bac, bca, cab, cba
- Number of permutation of n objects: P(n)=n!
 - WHY?

Combination

- c(n,k) is the number of ways of choosing k objects from n objects when order does not matter
 - The text describes c(n,k) as the number of kcombinations of an n-element set
 - Also written as (nk)
 - Spoken as "*n* choose *k*"

•
$$c(n,k) = \frac{n!}{(k!(n-k)!)} = \frac{n*(n-1)*(n-2)*\ldots*(n-k+1)}{k!}$$

Basic Summation Formulas

Floor and Ceiling

- Floor(x) = the largest integer that is ≤ x floor(x) is written as [x]
 - On a number line, floor(x) is the first integer at or left of x (ie towards -∞) for positive x
 - Floor(x) truncates the fractional part of x
 - Example [*2.5*] = ???
- Ceiling(x) = the smallest integer that is ≥ x ceiling(x) is written as [x]
 - On a number line, ceiling (x) is the first integer at or right of x (ie toward ∞) for negative x
 - Ceiling (x) truncates the fractional part of x
 - Example [4.2963884] = ???

Linear Growth vs Exponential Growth

How Long Until Computers Have the Same Power As the Human Brain?

Lake Michigan's volume (at 2.88x10¹⁷ fluid ounces) is about the same as our brain's capacity (in calculations per second). According to Moore's Law, computer processing power doubles every 18 months. If you want to fill Lake Michigan with water at that rate, you will see very little progress for a long time, and then suddenly it fills all the way up.

WATERLOO

200 KM or 124 MILES

Source: https://singularityhub.com/2016/04/05/how-to-think-exponentially-and-better-predict-the-future/

Comparison Example $y = 2^x$ grows exponentially compared to y = x 1000 500 exp(x) х ln(x) 100 y = x grows 50 exponentially ≻ compared to $y = \ln x$ 10 Or for any log function 5 1 5 10 50 100 500 1000 1 Х

Practice

- Solve these.
 - Show $\log_b a = 1/\log_a b$
 - Simplify log_{b^n} a
 - Show $b^{\log_a d} = d^{\log_a b}$
 - If *log* (*x*+1)- *log*(*x*-1) = 2, what is *x*?
 - What is $\sum_{i=1}^{n} i 1$?
 - Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?
 - From a group of 7 women and 6 men, five persons are to be selected to form a committee so that at least 3 women are there on the committee. In how many ways can it be done?

